咨询热线:0759-3186871 / 3186872

您现在所在的位置:主页 > 考试大纲 > 专升本 > 高数二 >

成人高考专升本高等数学二考试大纲[2]

时间:2015-09-08 作者:admin阅读:

R>  2.要求
  (1)熟练掌握用洛必达法则求“
  0 ∞ ” “ ” “0∞” “∞—∞”型未定式的极限的方法。 0 ∞
  (2)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增 减性证明简单的不等式。
  (3)理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法, 会求解简单的应用问题。
  (4)会判定曲线凹凸性,会求曲线的拐点。
  (5)会求曲线的水平渐近线与铅直渐近线。
  三、一元函数积分学
  (一)不定积分
  1.知识范围
  (1)不定积分 原函数与不定积分的定义 不定积分的性质
  (2)基本积分公式
  (3)换元积分法 第一换元法(凑微分法) 第二换元法
  (4)分部积分法
  (5)一些简单有理函数的积分
  2.要求
  (1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质。
  (2)熟练掌握不定积分的基本公式。
  (3)熟练掌握不定积分第一换元法,掌握第二换元法(仅限形如
  2 2 2 2 。 ∫ a x dx、 a + x dx 的三角代换与简单的根式代换) ∫
  (4)熟练掌握不定积分的分部积分法
  (5)掌握简单有理函数不定积分的计算。
  (二)定积分
  1.知识范围
  (1)定积分的概念 定积分的定义及其几何意义可积条件
  (2)定积分的性质
  (3)定积分的计算 变上限的定积分牛顿—莱布尼茨(Newton—Leibniz)公式换元积分法分部积分法
  (4)无穷区间的广义积分、收敛、发散、计算方法
  (5)定积分的应用 平面图形的面积、旋转体的体积
  2.要求
  (1) 理解定积分的概念与几何意义,了解可积的条件。
  (2) 掌握定积分的基本性质
  (3) 理解变上限的定积分是上限的函数,掌握对变上限定积分求导数的方法。
  (4) 熟练掌握牛顿—莱布尼茨公式
  (5) 掌握定积分的换元积分法与分部积分法。
  (6) 理解无穷区间广义积分的概念,掌握其计算方法。
  (7) 掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成 旋转体的体积。
  四、多元函数微分学
  1.知识范围
  (1)多元函数 多元函数的定义 二元函数的定义域 二元函数的几何意义
  (2)二元函数的极限与连续的概念
  (3)偏导数与全微分 一阶偏导数 二阶偏导数 全微分
  (4)复合函数的偏导数 隐函数的偏导数
  (5)二元函数的无条件极值和条件极值
  2.要求
  (1)了解多元函数的概念,会求二元函数的定义域。了解二元函数的几何意义。
  (2)了解二元函数的极限与连续的概念。
  (3)理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法。掌握 二元函数的二阶偏导数的求法,掌握二元函数全微分的求法。
  (4)掌握复合函数与隐函数的一阶偏导数的求法。
  (5)会求二元函数的无条件极值和条件极值。
  (6)会用二元函数的无条件极值及条件极值求解简单的实际问题。
  五、概率论初步
  1.知识范围
  (1)事件及其概率 随机事件 事件的关系及其运算 概率的古典型定义 概率的性质 条件概率事件的独立性
  (2)随机变量及其概率分布 随机变量的概念 随机变量的分布函数 离散型随机变量及其概率分布 (3)随机变量的数字特征 离散型随机变量的数学期望 方差 标准差
  2.要求
  (1) 了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。
  (2) 掌握事件之间的关系:包含关系、相等关系、互不相容(或互斥)关系及对立关系。
  (3) 理解事件之间并(和) 、交(积) 、差运算的定义,掌握其运算规律。
  (4) 理解概率的古典型定义;掌握事件概率的基本性质及事件概率的计算。
  (5) 会求事件的条件概念;掌握概率的乘法公式及事件的独立性。
  (6) 了解随机变量的概念及其分布函数。
  (7) 理解离散型随机变量的定义及其概率分布,掌握概率分布的计算方法。
  (8) 会求离散型随机变量的数学期望、方差和标准差。
  考试形式及试卷结构
  试卷总分: 试卷总分:150 分 考试时间: 考试时间:150 分钟 考试方法: 考试方法:闭卷,笔试